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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-34

TEMPERATURE FLEXURE OF ELASTIC ELEMENTS*

By G. A. Slomyanskii

Various kinds of elastic elements - coil and spiral springs, bellows,

aneroid and manometric boxes and units, manometer tubes, force bellows -

are widely used in instrumentation and mtomation as sensitive elements. They

are used to measure forces, moments and pressures. In many cases they are

employed for indirect measurement of various physical quantities, to each

value of which a definite force, moment or pressure corresponds. Thus, for

example, elastic members are used to measure the flight altitude and air

speed of an airplane, the Hach number, etc.

In many cases instruments and automatic apparatus with elastic elements

are intended to operate under ambient temperatures that vary wldely. Temp-

erature changes induce changes in the modulus of elasticity of the material

of which the elastic element is made, and consequently, variations in its

flexure as well, which in turn leads to variation in the readings of the in-

strument although the quantity being measured has not changed. As a result,

a temperature error appears in the instrument readings. In order to calcu-

late the magnitude of this error, we must know the temperature flexure of the

elastic element. The temperature flexure of an elastic element depends not

only on the temperature but also on the characteristic curve of the element*_

Elastic elements prepared by the same plants and by the identical

methods do, as a rule, have slightly differing characteristic curves. Ac-

cordingly, they will have slightly different temperature flexures. Hence, in

determining the temperature flexure of any specific elastic element, we must

take as our basis not its calculated characteristic curve but its actual, ex-

perimentally ascertained characteristic curve. This approach to determining

the temperature flexure of an elastic elemen£ will enable us to solve the

problem as to the possibility of using the element in question in an instru-

ment or in some other piece of apparatus for which it is designed.

*Translated from "Some Questions Relating to Modern Instrumentation

Technology." Edited by Poliakov. PP. 5-21.

**
The characteristic curve of an elastic element is the dependence of its

course (flexure) on a magnitude of the force acting on it (pressure, force or

moment) or any other magnitude for the indirect measurement of which it is

used. The characteristic curve may be given either graphically or in tabular

form.
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The purpose of this article is to work out a method for determining the

temperature flexure of an elastic element according to its experimentally

determined characteristic curve, taken at a known temperature.

Let us assume that the elastic element is for the purpose of sensing

pressures.

We denote: p - pressure acting on the elastic element; W - the give

(flexure) of the elastic element, obtained at pressure p. The dependence

of the give on the pressure (force or moment) is

W - f(p)

and this will be called the characteristic curve of an elastic element under

pressure (force or moment). We shall assume that the characteristic curve
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Fig. I. The drawings of characteristic curves of elastic

elements according to pressure.

of the elastic element according to pressure,(Eorce or moment) has no breaks

and is a monotonously increasing function in tle strict sense (Fig. i, a and

b) or a function monotonously decreasing in the strict sense (Fig. I, B).

Elastic elements with characteristic curves of this nature are most com-

mon. Most frequently the characteristic curve9 are determined over an inter-

val from 0 to a value P2 (see Fig. I, a). However, there are frequent cases
in which the characteristic curve does not begLn at the 0, but covers a giv-

en bounded interval of pressures /pl,P2 / where Pl and P2 are the values for



the pressures at the ends of the interval (Fig. I, b and B). In both cases

the characteristic curves may be either linear (Fig. I, curves la and Ib),
or nonllnear (Fig. I, curves 2a, 2b and 2B). The nonlinear curves are most

frequently encountered in the case of elastic elements used for indirect

measurements. When any elastlc element is prepared, it is tested to deter-
mine its characteristic curve according to pressure or according to the physi-

cal quantity which it is designed to measure indirectly. The dependence be-

tween the indirect measurement of the quantity and the pressure is always

known. It can usually be given in the form of the corresponding table. In

this way, the characteristic curve for pressure is always known for each elas-
tic element that has been made. We now consider how, using this characteris-

tic curve, taken at a given temperature, we can define the magnitude of the

temperature flexures of the given elastic element.

Study of the characteristic curves of elastic elements has shown that the

relationship between _ and W may correspond, with an accuracy sufficient for

practical purposes, to an exponential function, and in its general form, have

the characteristic curves shown in Fig. la) may be represented by the expres-
sion

p m aL_ q,

where a, q - are constant parameters, dependent on the geometrical dimen-

sions of the elastic element and their Poisson coefficient;

K - the modulus of elasticity of the material of the elastic
element.

Solving this equation for W and introducing new constant parameters

and _, we have

w =_n A =c (la)
E n

To determine constants A and n, we must know any two points on the

characteristic curve. Let these be, for example, a middle point (p3,W3)

and a terminal point (P2" W2) of the characteristic curve. Then

Ixv,--I zW,. A----w-'
,g p,- ig_ ' p_" (2)

Similarly, for the characteristic curves shown in Fig. I, b and B,

wffi A(p---_);

w= A 0,_'--._');

(,

(Ib)

(zs)

In order to determine the constants _ and A appearing in Eq. (lb) and

(1B), we must know the displacement W2, obtained at pressure P2' and the val-
ue of the derivatives at any two points of the characteristic curve. It will

be desirable that these should be the derivatives W1" and W_ at the first
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(p,O) and the last (P2' W2) points of the characteristic curves since they
are the furthest aparE (Fxg. 1, b and B). In this case

n=l+
,z v; -,g w;
,gp, _ ,gp, " (3)

v,A=--i-
- p;'-p;' " (4)

Here the slgn + is taken for Eq. (lb) and the minus sign for Eq. (IB).

For characteristic curves that are llnear for the pressure (force, moment),

n = 1. We consider examples of a structure of the formulas obtained s and
compare the values they give for the amount of sag W with its values accord-

Ing to the table.

Example 1. The elastic element has a smoothly damped characteristic
curve for pressure, designed in the interval from 800 m Hg to 2000 mm Hg,

and corresponds to the data given in the first two columns of Table 1.

W, calculated from

empirical formula
Pl' W, n.. F..

mltg m, ..

800 0 0 0 0

900 0. 260 0. 276 +0.016 +6.15

IOO0 0. 518 O. 525 4-0. 007 +I. 35

1100 O. 77_ O. 778 0 0
1200 1 . 028 1. 032 +0. 004 +0.39

1300 1. 284 1. 279 -0. 005 -0.39
1400 1. 532 1. 524 -0. 008 -0.52

1500 1.784 1.765 -0.019 -0.06

1600 2. 022 2. 003 -0. 019 -0.94
1700 2. 254 2. 239 -0. 015 -0.67

1800 2.490 2.472 -0.018 -0.72

1900 2. 711 2. 703 -0. 008 -0.25
2000 2.9 32 2 . 9 32 0 0

F

3
4

According to what has been said above, in a given case the relationship

between W and R may be defined by Eq. (Ib). On the basis of the first two

columns of Table 1 we see that if the first p int (Pl = 800 mm llg, WI = O)
and the last point (p_ = 2000 mm Hg, W9 = 2.932 n=n) of the characteristic

curve, the derlvatlve_ W_ and W_ are:-

W _o.._) --o= %. 10- 4 .a.,cl_.,.: eg;
900--800 -

_ffi= 2.93__--2.71l --22,1 • 10 -4 _._/_M_o0o-- 19o0 Hg.
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Substituting in Eq. (3) the numerical values for Pl' PP' WI_ W_' and
calculating, we find that n = 0.8226. We further find f_om Eq. _4) Ehat A =

0.0107. iubstttutin_ the values found in Eq. (lb) and taking into considera-

tion that p_= 8000.8226 = 244.41, we find that in the case under considera-

tion the dependence of W on p may be defined by the following empirical equa-
tion:

W - 0.0107 (p0.8226 _ 244.41).

The values for W calculated from this formula for the vales of p shown

in Table 1, are given in the third column of this table. The same table

likewise gives the differences between the values of W as calculated by the

empirical formula and the values from the table; these differences are desig-

mated by g The last column of Table I gives the values of g expressed

as percentages of the corresponding tabular values of W. It will be seen

from Table I that the empirical formula gives values for W sufficiently close
to the values of the table.

Example 2. The dependence of _ on H for an elastic system intended for

barometric measurement of height is given in the first two columns of Table 2.

Table 2.

W, calculated from

B, W, PH' empirical formula, _

km _n m l_ m mm Z

0 0 760 0 0 0

1 0.270 674.07 0.289 +0.019 +7.04

2 0.550 596.18 0.572 +0.022 +4.00

3 0.830 525.75 0.851 +0.021 +2.53

4 I.II0 462.21 1.126 +0.016 +1.44

5 1.3_0 405.04 1.396 +0.016 +1.16

6 1.650 353.73 1.662 +0.012 +0.73

7 1.910 307.82 1.923 +0.013 +0.68

8 2.175 266.85 2.177 +0.002 +0.09
9 2.430 230.42 2.428 -0.002 -0.08

10 2.670 198.12 2.675 +0.005 +0.19

11 2.910 169.60 2.917 +0.007 +0.24
12 3.150 144.84 3.150 0 0

The third column gives the barometric pressures for the corresponding heights,

taken from the standard atmospheric table. It will be seen from Table 2 that

the elastic element in question has a smoothly dampened characteristic curve

for height. Its characteristic curve for pressure corresponds to curve 2B in

Fig. IB, and is defined over the range from Pl " 760 ann llg to P2 = 144.84

According to what has been said, the dependence of W on _, for the

elastic element under consideration, may be defined by an empirical formula
of the form (1B). We see from the data of Table 2 that the derivatives W_

and W2' are equal at points (Pl = 760 mm Rg, W1 = 0) and (P2 = 144.84 mm _g,
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v2 = 3.150 ram), respectively to

o._;2--o ,= --31,4. I0 -4 _A/M_
w; = eT,.,, - 76o t{g;

U_/' ,,:: 3,1._)--2,910 x._/,e._2 I__,-- --96,9- 10-4 l',g.

m= 1

E20

Substituting in Eq. (3) the numerical values for W_, W_, Pl' P2 and
carrying out the calculations, we find that n = 0.3209. Further, from Eq.

(4) we find that A = 0.9088. Substituting the nu=erical values for n and

in Eq. (1B) and taking into consideration the fact that p_ =

7600.3209 = 8.402, we get the following empirical formula, provided the

quantities W and PH' for the elastic element under consideration:

0.3209,
W = 0.9088 (8.402 - PB )"

The value for W calculated from this formula, and likewise the vaIues

for _ , both absolute and as expressed as percertages of the tabular values
for W, are given In Table 2. We see from thls table that the empirical formu-

la gives values for W that are sufficiently close to the tabular values.

We now pass to the derivation of formulas for determining the tempera-

ture flexure of an elastic element from its pressure characteristic curve,

obtained for a definite temperature, which we shall designate as t . Fur-
x

thermore, all the magnitudes pertaining to this characteristic curve will

carry the index "x".

We introduce the following designations:

E20 - modulus of elasticity of the material of the elastic element at
temperature t = + 20eC;

dE - temperature coefficient of the modulus of elasticity of the elas-

dt tic elements;

V - the sag of the elastic element obtained as the pressure changes

from 0 to p; this sag will be called the full sag of the elastic

element;

M - the sag of the elastic element obtained as the pressure changes

from Pl to p; thls displacement will be called the working or

useful-displacement of the elastic element.

The designations E, W , W at any temperature will be provided with an

index indicating that temperature. Equation (la) gives the full displacement

(in the given case, it is also the working displacement), and Equations (lb)

and (1B) give the working displacement.

The fulI displacement of the elastic elements, from which Eq. (lb) and

(1B) apply, is equal to

F

3
4



c)w. = ApT ± uT= At," /A = _ .
(s)

Here the + slgn relates to Eq. (Ib) and the - slgn to Eq. (IB). The

full sag in all the cases considered is equal to Ap n.

The temperature flexure of an elastic element, obtained as the tempera-

ture goes from t to t, for an unchanging value of the pressure _, will be
X

equal to

AWt, t=+(Wot_W,,)= __lp. " (W,,, l)• -- • -- "* _V:._ "

Here and further the + sign relates elastic elements whose characteris-

tic curves are defined by Eq. (la) and (ib), and the - sign corresponds to

elastic elements having characteristic curves defined by Eq. (IB). On the

basis of Eq. (la) and (5), we have

(")" n.Wo,=c -e. ; Wo.,=_ W.,. _Et,!

Substituting these values for W in the parentheses of the ex-

pression for /% Wtx, t ' we obtain: t' Wntx

__ [1Et, V_ l ]- .

Assuming that the relationship of the modulus of elasticity and the

temperature is defined by the equation

E,=Em [I--m (t--20)].

we may write down the following expression for _UTt,,t in the form

aW,,.,=_U';. ] II-m(t'-2°)l'_- 1}• | I I - m(t - 2o)i'_
(6)

For elastic elements with a characteristic curve which is linear for

pressure (force, moment), n = 1 and Eq. (6), after some elementary transfor-

mations assumes the form

A iP't.., = -4- W.. ,m (t - t,)
-- I -- m (t--20)

(7)
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This equation is precise and makes it possible to calculate the temp-

erature flexure of elastic elements which have a linear characteristic curve

for pressure (force, moment), obtained as the temperature changes from t to

_. The magnitude W_x is taken directly from the characteristic curve x
obtained for temperature t .

X

We return to the general equation (6). For practically possible values

for the temperatures t and t, the derivatives m(t -20) and m (t-20) are con-
siderably less than unity. - xConsequentlyj without great error, it may be
assumed in Eq. (6) that

I I - .= (t. - _ZO)p= I - nm (t.- _);

It m (t- 2o)1_= l _ nrn (t- 20),

F

3
4

after which it takes the form

4-nmW"= (I-- t,)
4W,..1 --I- .=(t--2o) " (8)

For n=l, this equation is identical with Eq. (7).

It is often necessary to know the temperature fl,_xure of an elastic

element obtained as the temperature changes from a valiLe tI _ t to a valuex
t2 _ ix, with unchanged pressure _. We denote this f_exure as _W,,,tt

Our alm is to determine this quantity, starting from the characteristic curve

taken for temperature t . For this purpose we represent _WtI.,t in the
form x

a =r,,,,. = A_. t=- aW,,. ,,

Sags ALFt=.t, and _W/t=.t, are defined by lq. (8). Setting t:t 1
In it, we obtain the expression for A_?t=t, . Taking t=t^, we have

the formula for &_:z=.t_ . Inserting in the expression for A_Ij._L

the values found for AR_z=._ and A_g/_=._ , we obtain

t_ -- t z I -- tx I
A_g'/t"tt_/tt?l_/n'xl l- nnzlt=--20) l--n_(tl--20)J "

Reducing the expression within braces to a commor denominator, we have

[! -- nm (tx --_)J (t._ - - t 0

AWt, z,------4-nmWo, [i nm (t,--_) i [I am('2 - 20)1 (9)

For tl=t , t2=t in this formula becomes Eq. (8). Accordingly, Eq. (9)
Is more genera_ than Eq. (8). Henceforth, therefore, we shall consider only

expressions for AWz,.z= If the characteristic cJrve of a rigid
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element is linear for pressure (force, moment), then n=l and Eq. (9) in that
case assumes the form

. I1 -- ,,, (G -- _0)] (tz -- t,)
Wt,. ,, = :z_ m I.V,. _ 11-- m (t, -- _J) I I I -- m (t: -- 20) I (10)

Since in Eq. (9) and (10) each of the quantities

nm(tx-20), nm(tl-20), nm(t2-20)

m(tx-20), m(tl-20), m(t2-20)

for practically possible temperature values t , t , t_ is considerably less
X Z

than zero, then, neglecting their squares and products, Eq. (9) and (10) may

respectively be replaced by the following simpler expressions:

a_,,,, = ±rim W.., [ I + .m (t, + t,- t.- 20) 1(t: - t,)i (9a)

aW,,. ,,= + mW,._ [l + m (q + G - t,- 20)] (t, - q). (10a)

It will be seen from Eq. (9), (i0), (9a) and (lOa) that the temperature

flexure of an elastic element is directly proportional to its full sag W_ x"

Consequently, in elastic elements in which the dependence of W on _ is de-

fined by Eq. (la) or (ib), as W increases, so does AW%._ There is a

reverse picture for elastic elements where the dependence of W on _ goes

according to Eq. (IB); there, the flexure A W_, _ decreases as W in-

creases. In particular, the latter is the case for the elastic elements of

barometric altimeters. If they are not equipped with any temperature compen-

sators, then as the height increases the temperature error obtained as the

temperature changes by I°C will decrease.

Thus, gq. (9), (10), (9a), and (lOa) enable us to determine, from the

known characteristic curve of the full sag W _._ = f(p) of any concrete

elastic element, obtained at temperature t , the magnitude of its temperature

flexure AW_.,, for any point of th_ characteristic curve. It does not

matter for what magnitude the characteristic was obtained - for pressure

(force, moment) or for the magnitude for whose indirect measurement the elas-

tic element in question is used. However, the characteristic curve of the

complete sag is not always known, with the result that Eq. (9), (i0), (9a),

and (lOa) are not always suitable for practical calculations. Therefore, we

transform into a form that is suitable for calculating _tr. _ either

from characteristic curves of the complete sag or from characteristic curves

of the working (useful) sag. Assuming that the magnitudes entering _nto Eq.

(5) are defined at tx, we rewrite it in the form

_., , = A.p".
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Differentiating this expression according to p, we obtain

= A,np'-' ----- .W..,
, p

Hence

,,w..

or, taking into consideration the fact that

(ii)

, we have

F

5

By means of this equality Eq. (9) is transformed into the form

mpW' z I I -- nm (t, - 2o)1(:_ - t,)
_V,, ,,___+ • (12)

• --iI_nm(t_2O)lll_nm(t:_20) I

Correspondingly, gq. (9a) assumes the form

alr/,,.,j=_mPW_[l +nm(t,+t,-t,--20)l(t,--t,). (12a)

To calculate by means of these formulas it is necessary to know the

characteristic curve for the elastic element for pressure (force, moment); it

is a matter of indifference whether for the complete or the working (useful)

sag. The value of the derivative Wx. =dw, for pressure _ must take into

account the sign, and may be taken as equal?o the ratio of /_Wx, the incre-

ment of the sag, to _p, the corresponding increa:ent in the pressure (force,
moment).

If it is required to determine, by means of Eq. (12) or (12a), the

temperature flexures of elastic elements prepared according to identical

plans, then the nominal value of _ should be taken, since the variations of

this magnitude that are possible in practice with various elastic elements,

even referring to different lots, cannot in this case have any essential ef-

fect on the precision with which _Wtl,t 2 are _eflned.

When Eq. (9) and (ga) are used, which is reasonable for elastic elements

whose characteristic curves have the form represented in Fig. la, the value

of n may be determined according to Eq. (II).

If the characteristic curve of an elastic element is linear for pressure

(force, moment), then n = 1 and W_ = const, and is equal to W2x

_,-p,
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where Pl is the pressure corresponding to the initial point of the charac-

teristic curve (I# = 0); P2 and W^ are the pressure and sag corresponding
to its final point. Hence, for c_racteristic curves which are linear for

pressure (force, moment), we have, instead of Eq. (I0) and (lOa), the equa-

tions, respectively

and

A_,,,=-I - mpW_ ll--m(t,--_O)l(tz--tl)
• _ /%_p, II-m(t,-2o)l[I--m(t 1-2o)1

(13)

AW,,. ,,= __+mpg_______ii +m(t,-i-t_--t,--20)] (t.--t,).
P2-- P,

(13a)

Equation (13), is exact like Eq. (10).

For characteristic curves defined by Eq. (la) and represented in Fig.

la, Pl = O.

In many cases, it is possible in Eq. (12a) and (13a) to neglect the

terms nm(tl+t2Ttx-20 ) and m(tl+t2-tx-20), which are small in comparison to

unity. In these cases, we obtain, instead of Eq. (12a), the following simple

equation for defining the temperature flexure of elastic elements with non-

linear characteristic curves for pressure (force, moment):

AWt,. t,=-t- mpW_, (t,-- t,). (14)

The relative error of this equation as compared to Eq. (12a) equals

_(14)= nm (t, + ts -- t, -- 20) .100_6. (15)
1+ nm (t I +t_ -- t_ -- 20)

Correspondingly, for elastic elements with linear characteristic curves

for pressure (force, moment), we have instead of Eq. (13a) the equation

AW,/,..t,=_.+_Pws'(t2--t,),
p,--p, (16)

which, as compared to Eq. (13a), gives the relative error equal to

m(t,+t I- t,-- 2_ 100%.
Sere=_+m (t,_ t2- t,- _) (t7)

The possibility of employing Eq. (14) and (16) is evaluated with the aid

of Eq. (15) and (17). To this end, it is advisable to make use of the graph
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in Fig. 2_ where the value of _ is given by the _unction

K - run (t I + t 2 - t - 20).x

By way of examples of the use of the equations that have been derived,

we determine the temperature flexures of the elastic elements considered in

the two previous examples. We shall assume that both elastic elements are

made of phosphor bronze BrOPh 6.5-0.4, for which m = 0.00048 I/°C, and that

their characteristic curves were obtained for temperature t = + 20°C. We

determine the temperature flexure of both elastic elements _t the first

(p = pl ) and last (p = P-)Z points of their characteristic curves, for temp-
erature changes over the following ranges:

1) t 1 = d_20°C,

2) t I = +49°C,

3) t 1 =-59°C,

4) t 1 = +20°C,

5) t 1 = ÷20"C,

t 2 = +21°C;

t2 = +50°C;

t2 = -60°C;

t2 : -60°C;

t2 = +50°C.

We make the calculation both according to Eq. (12) and Eq. (12a) and

(14), which enables us to evaluate the accuracy of Eq. (12a) and (14) as com-

pared to Eq. (12). The values of the derivatives W_ at the initial and ter-

minal points of the characteristic curve, as well as the values for n are
m

taken as equal to the quantities previously determined for the characteristic

curves under consideration (cf. Examples I and 2). The results of the calcu-

lations are given in Table 3, which also gives the differences between the

values for Wt t , calculated from Eq. (14) and (12), expressed both in

millimeters andl_n2percentages of the values for _Wtl,t I , determined from

Eq. (12). These differences are designated by 9.

It appears from Table 3 that Eq. (12) and (12a) give practically identi-

cal results. The same c_4_ be said for Eq. (13) add (13a). Accordingly, Eq.

(12a) and (13a) should be used in the calculatior_, since they are simpler,

and practically equivalent in precision to Eq. (12) and (13). It likewise

appears from Table 3 that in the examples considexed the precision of Eq.

(14) may be considered as adequate for practical rurposes. Table 3 shows

that the values for the error _ for the elastic _lement of Example I is more

than twice as great as the value for the elastic _lem_nt considered in Exam-

ple 2. The explanation for this is that the two _lastic elements have dif-

ferent values for the product run. In the elastic element of Example I, nm =

3.948-10 -4 I/°C, while in the elastic element of fxample 2 nm = 1.54-10 -4 _C.

The smaller run, the smaller _ .

The equations that have been derived are valid for any elastic elements

whose characteristic curves are subject to any of laws (la), (Ib), (IB). It

does not matter in this connection whether the el_stlc element is used to

sense pressure _ or force P or moment H (coil springs, spiral springs, etc.).

In the latter cases, it will be necessary to replace _ in the equations for

Wtl, t2 by P or H, respectively. If the elastic element operates by tor-

slon_ then m in the equations in question must be replaced by the temperature
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Ffg. 2. Graph of relative error
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cpa
E_[I -- m (G-- _41 _ = W.. ,,

we find

• :,-- w...+
nn_ If'.., (t -- tD

--°

Hence

nmlgrr, x'(t--tx) F

3
4

The term m(t -20) is small compared to unity,

ing Eq. (11), we h_ve

a t_,.,=mpW'x(t-- _).

Neglecting it and employ-

(18)

As previously, we represent AW t ,t , the t,:mperature flexure of the
1 2

elastic element, which occurs as the temperature changes from tI _ tx to

t2 _ tx, the pressure p being unchanged, in the fo an

AW,.. t. = AW_..,,-- _Wt,.

If we now substitute for the flexures _ W tx _tl
values of them determined by Eq. (18), we have

AWt,._,---,npW;(tz--t,)

and 2kWtx, t2 the

This equation coincides exactly with Eq. (14). Since Eq. (18) was de-

rived on the assumption that the difference (t-t) is small, then the present

equation for _Wt t is valid only for tI and _2 in the neighborhood of tx •

i ' _ " I ,This applies completely to Eq. (16) as we_l which is only a particular case

of Eq. (14). In this way, Eq. (14) and (16) are c,pab]e of supplying a pre-

cise result only in those cases when tI and t2 are close to tx.

Up to the present we have considered elastic elements whose character-

istic curves are monotonous functions in the strict: sense and have no singu- .

lar points. We now go over to considering the temperature flexures of elas-

tic elements which have characteristic curves for t:he force P (pressure,

moment) that are made up of broken line segments. In this we confine ourself

to the case in which the characteristic curve has it single point of inflec-

tion (Fig. 3). As an example of such an elastic e_ement we may take an elas-

tic element consisting of two compression springs, schematically represented

in Fig. 4. We assume that the transverse moduli a11d their temperature co-

efficients are the same for both springs.
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Although the section OA (see Fig. 3) of spring 1 is operative (see Fig.

4), so that calculatiQn of the temperature flexure for this section of the

characteristic curve should be conducted according to the equations derived

above. From the _iscontinuity point A ( Pdisc VJdisc _ both springs are

operative. In this case the force P and the sag W are connected by the re-

lationship

(19)

where al, a 2 - constant coefficients depending on the dimensions and the num-
ber of turns of the ist and the 2nd spring respectively:

G - transverse modulus.

From this expression we find that the section AB (see Fig. 3)

w= + (20)
G(a,+a=) al+a 2

This relationship between W and P coincides with the relationship de-

fined by Eq. (Ib). Hence, the equations previously derived for the tempera-

ture flexure of elastic elements are applicab]e as well to the section AB of

 dis, E
i

o _hise P' p

Fig. 3. Characteristic curve of an elastic element.

P

Fig. 4. Diagram of an elastic element.
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the characteristic curve, now under consideration. We prove this. We con-
sider the temperature flexure of the elastic element over the section AB.

The temperature flexure obtained as the temperature varies from t to t, with

the value of force P unchanged, will be x

Substituting for W t and W x in this equation the values as obtained from
Eq. (20), we have

__'Sx,t---- P + __ p a,Wd{qc
Ot(al +at) a,+a_ Gtx(a,-_al) a:4a t

F

3
1,

form

Hence, after some simple transformations we have

pA_tz't_--_- Gtx(al+at) \Gt I .

For point B of_e characteristic curve (see Fig. 3), Eq. (19) has the

Subtracting from this term by term Eq. (19), derived for point A of the

characteristic curve, we have

O,_(at+a2)= Pz--P rl_,_e z

Wz, - W disc I

Substituting this value for Gtx(a I + a2) in the last expression for

_Wtx, t and replacing Gtx and G t by their values, we have

,}.
AW,,, t -_- p2__pl_¢,.., Ov,[I r,, (t --2o)1

Reducing the expression in braces to a commor denominator we finally

get

P (W2t -- WAi_., D m, (t - - t O

t_W,.. ,= P2- _,._ t--m,(-'20) (21)
Ic

We now define _Wtl,t 2 , the temperature flexure of the elastic



element over section AB (see Fig. 3), resulting from a temperature change
from t I _ tx to t 2 _ tx, with the value of force P unchanged.

As previously,
I_,. ,, ----_ I_,. ,, -- ._I.[_,._,.

19
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Inserting in Eq. (21) first t = t] and then again t = t2, we have corre-

sponding expressions for _W t t and_Wt t " Inserting these in the
J _ X j

right side of the last equation _nd reducing t_e expression obtained to a

co_on denominator, we have

n"P (WZ* -- Wa;'¢" 't) [l--n'l(t*--20)l(tz--tl) (22)
AWt,.t,= p=_p_,.©s [l__m,(t _20)][l__rn,(tz___)l"

This expression, for the same reasons as given for Eq. (I0), may be re-

placed by the following simpler equation:

AW,,.,,-- mIP(W"-- Wa:_.,) [l +m, (t, +t, -t --20)](t,--t,), (22a)
P=- P_is= x

which is the one that should be used for determining A Wt ,t over section
i 2

AB of the characteristic curve (see Fig. 3) of the elastic element under con-

sideration; in this the percentage error obtained is

m' (t' _ tz-- t" -- 20) |00%.
_(22_) -- I + m,(tL _ t=_t,-- 20) (23)

The calculation according to Eq. (22a) may be replaced by calculation from

the following very simple equation:

A _'t,.,,= m,P(WI,-- IZ_'d;_ ,O(t,_t,).
P=--Psi,,

(24)

We note that Eq. (22), (22a), (24) are in complete correspondence with

Eq. (13), (13a) and (16).

Thus, in all the cases considered the temperature flexure at the point

under consideration of the characteristic curve is equal to

. aWt,.,,=mpW; [1 +nm (t, q- t= - t= -- 20)].
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If the force acting is concentrated force P or moment M, p must be re-

placed by P or M, respectively. For elastic e_ements operating by torsion,

m I should be taken instead of m.
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